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An experimental study was conducted in a turbulent spray flame in which droplets
were produced ultrasonically at low velocity relative to the host gas. In this fashion,
injector-specific effects on the two-phase flow were minimized and a scenario generally
characteristic of the far field of practical spray systems could be simulated. Close to
the burner exit, the spray flame appeared as a dense column of drops burning with
an envelope flame. Further downstream, it opened up slowly in the radial direction
and developed a turbulent ‘brush’ appearance. Measurements of the size, velocity
and concentration of the droplets, and of gas-phase velocity and temperature were
made by combining a Phase-Doppler interferometric technique with Stokes/anti-
Stokes Raman thermometry. The experimental data were used to derive scaling and
self-similarity for the Reynolds-averaged continuity and momentum equations using
suitable transformations.

Results showed three distinct regions, on the basis of the behaviour of the gas
axial velocity in the spray flame. In the lower part of the flame, the gas momentum
increased because of vaporization. In the intermediate region of the spray flame,
the axial velocity decayed along the centreline as an inverse power of the distance
from the virtual origin, with exponents smaller than unity. In the upper part of
the spray flame, the flow field recovered the axial velocity decay that is typical of
incompressible jets, namely as an inverse of the axial distance. Self-similar behaviour
held for the axial velocity throughout the intermediate region. The vapour source
term in the gas continuity equation scaled approximately as an inverse power of
axial distance, and exhibited self-similarity throughout the spray flame. As a result,
a simple model of the Reynolds stress term could be formulated, in which two
competing contributions appear: one, that is due to turbulent transport, tends to
increase the value of the velocity correlation; another, that is due to the vaporization
term, tends to reduce the value of the velocity correlation and can be construed as a
vaporization-induced tendency towards relaminarization. The first term is modelled
by a classic gradient-transport approach yielding an empirical mixing length relating
the velocity correlation to the average velocity gradient. Model and experiments are
found to be in good agreement, especially sufficiently far from the injector, where
one-way coupling between the two phases holds.

1. Introduction
Spray combustion is an important facet of modern technology. It is used in jet

engine combustors, industrial and residential furnaces, internal combustion engines, to
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name but a few of the applications that utilize combusting sprays as primary energy
source. Invariably in all of these applications, the combustion can be considered
turbulent. The use of spray burning in most non-premixed combustion environments
can have a profound influence on flame structure and pollutant formation. Despite its
technological importance, the subject has been insufficiently studied at a fundamental
level, probably because of its inherent complexity.

For the past forty years the research community has focused on a much more
manageable liquid fuel system, the classic single-droplet burning, that was originally
regarded as the building block of spray combustion (Williams 1985). Experiments
of this kind can be conducted under well-defined and well-controlled conditions.
Modelling can even account for detailed kinetics and transport for combustion of
multi-component droplets (Marchese et al. 1996). But, the relevance of single-droplet
burning to practical spray systems is limited. Droplets are known to evaporate and
burn as a group, interacting with one another in practical environments (Chigier &
McCreath 1974).

We have been pursuing the objective of bridging the gap between classical single-
droplet burning studies and practical spray flames by using some well-defined con-
figurations, encompassing at first laminar spray diffusion flames. The laminar con-
figurations include counterflow (Chen & Gomez 1992) and co-flow (Chen & Gomez
1996, 1997). The experimental systems are simple and amenable to detailed numerical
modelling (Gao et al. 1996). Droplet–droplet and droplet–flame interactions can be
studied in the absence of turbulence complications. As a natural development in this
effort to understand fundamental features of practical spray systems, we now face the
much more challenging case of turbulent spray flames.

We will concentrate on an axisymmetric configuration, which is the one most often
found in practice. In this case, it is conceptually useful to think of both turbulent
gaseous jet diffusion flames and spray flames as complex ‘variations’ on the theme
of turbulent jets. In increasing order of complexity, a jet diffusion flame differs from
a turbulent jet because of the presence of a distributed source of energy due to
combustion. While certainly related to the gaseous jet non-premixed analogue, a
spray flame differs because of the presence of drops acting as distributed sources of
mass, as well as sources/sinks of momentum.

Drop dispersion and collective drop vaporization and burning are important physi-
cal mechanisms in spray flames. A number of studies have concentrated on either one
of these issues, as in particle-laden jet studies addressing the former (e.g. Longmire
& Eaton 1992) and group combustion models addressing the latter (e.g. Labowsky &
Rosner 1978). As a result, they fail to capture the full picture of spray combustion:
particle-laden jets lack the effect of the combustion heat release, while group com-
bustion models, in view of their prototypical, spherical geometry configuration, miss
the important convective–diffusive nature of the full problem.

The challenge to experimentation posed by turbulent spray flames stems from two
difficulties associated with the liquid phase, in addition to the obstacles customarily
dealt with in turbulent gaseous flames. First, spray combustion is implemented in
everyday practice with a strong influence on the combusting flow field of the fuel
injector used to disperse the liquid. It is not uncommon for droplets to be injected at
relative velocities on the order of hundreds of metres per second with respect to the
gaseous phase (Kamimoto & Koyabashi 1991). As a result, the drop motion, especially
close to the injector, and in some practical cases throughout the combustion field, is
influenced by specific aspects of the injector design. Liquid atomization and gas flow
in the combustion chamber are very strongly coupled and the atomization in itself
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induces turbulence. Thus, the gas phase is also strongly affected by the injector design.
This, in turn, diminishes the ‘universality’ of any results that might be obtained from
such a spray flame.

The second difficulty originates from the hostility of this environment that all
but precludes quantitative experimentation. Laser interferometric techniques have
already been extensively used in such environments for the characterization of the
dispersed phase, as is also the case for the present study. On the other hand, laser
spectroscopic techniques, that are virtually irreplaceable for temperature and species
measurements in a turbulent environment, have been adapted only very recently to
combusting sprays (Takahashi et al. 1996; Luczak et al. 1996), in some case through
developments in our own laboratory (Karpetis & Gomez 1996). Consequently, this
is the first study in which both types of diagnostic techniques, specifically Phase
Doppler interferometry and spontaneous Raman scattering thermometry, are applied
quantitatively in the same spray combustion system.

As regards the first difficulty, the influence of the fuel injector, we chose to bypass it
altogether in an effort to establish general features of combusting sprays. To that end,
droplets are generated with a gentle atomization technique, which produces minimal
velocity slip between the two phases. In this manner we avoid effects on the structure
of the spray flame that are specific to the particular injector or, equivalently, the initial
and boundary conditions of the dispersed phase. Turbulence in the oxidizer stream is
‘synthesized’ independently by the combination of a perforated plate and a contoured
flow passage. Since the role of the initial conditions is minimized on purpose, this
study can provide information that is relevant only to the far-field region of practical
spray flames, in which the droplets, at least in an average sense, are equilibrated with
the gaseous stream.

The experimental methods and results will be discussed first. Subsequently, vapour
source and momentum self-similarity will be established in the spray flames and
the effect of these scaling laws on the Reynolds stress will be examined. Based
on the experimental measurements, an algebraic model for the Reynolds stress will
be presented. This type of information should be useful to engineering models of
turbulence or to submodels of more complex approaches.

2. Experimental methods
The burner used in this study is shown in figure 1. It was designed with two

objectives: (a) to maximize the level of gas turbulence, in view of the inevitable
relaminarizing effect of the high combustion temperatures and (b) to minimize the
effect of the drop initial conditions, so that most of the drops would respond to at
least the average gas velocity. The resulting spray would resemble a line source of
vapour, with drops convected along the axial direction, while diffusing in the radial
direction under the action of gas turbulence.

The liquid fuel was injected using a commercial ultrasonic nebulizer (Sonotek).
This device can disperse modest liquid flow rates, while imparting minimal velocity
to the liquid drops. The drops were carried upwards by air fed through a series of
holes arranged along the outer periphery of a plate mounted in the burner housing,
as shown in figure 1. The positioning of the air inlet into the burner housing was
optimized to achieve maximum turbulence levels as well as drop dispersion at the
exit. By trial-and-error we arrived at a set-up very similar to the one used by other
investigators (e.g. O’Young & Bilger 1997). The small initial velocities of the drops
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Figure 1. Burner and spray flame schematic.

resulted in minimal slip between the drops and the gas close to the atomizer tip†.
A flame, once ignited, was anchored at the atomizer tip and extended through the
contraction into the measurement field through a circular opening with diameter
D = 12.5 mm. The close anchoring of the flame, as observed visually through the
burner opening, ensured that non-premixed combustion prevailed. The spray flame
appeared as a dense column of drops burning with an envelope flame, close to the
burner exit. Further up, the flame opened up slowly in the radial direction and
ultimately developed into a turbulent ‘brush’ flame.

† As will be shown later, the gas jet is accelerating immediately after the burner exit, thus a velocity
slip is expected to develop between the gas and the drops. However, this effect is a consequence of
the dynamic behaviour of the spray, as opposed to being ‘inherited’ from atomizer-dependent initial
conditions.
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Detailed measurements were performed for two different spray flames, as follows. In
one case, the volumetric flow rate of the air under standard conditions was 80 l min−1,
and the liquid mass flow rate was 5.1 g min−1 (flame I). In the second case (flame II)
the air flow rate was 110 l min−1 and the liquid mass flow rate was 3 g min−1. The
overall equivalence ratio was calculated to be ΦI = 0.35 and ΦII = 0.15 respectively.

The conditions of the two flames correspond to a Reynolds number (Re = UD/ν)
of 21 000 for flame I and 29 000 for flame II under cold conditions. The type of
injector used here produced a distribution of drop sizes centred around an average
diameter of 30 µm. The Stokes number of a 30 µm drop under burning conditions can
be estimated to be 0.3 for flame I and 0.7 for flame II, both calculated with respect
to a global gas time scale D/U, where U is the average exit velocity. At the same hot
conditions, the Stokes number with respect to an estimated Kolmogorov time scale
would be 5 for flame I and 13 for flame II. It should be noted that these values are
representative of the highest values that can be obtained in the spray flame. The above
numbers were calculated using as stopping time for the droplets τd = ρld

2/18µ, where
ρl is the liquid density and d the droplet size under consideration. Contrary to the case
of practical injectors that impart very large velocities to the liquid drops, and create
large velocity slip between the drops and the gas (Kamimoto & Koyabashi 1991), the
Stokes numbers achieved in the present study are sufficiently small so that any severe
influence of the drop initial conditions on the spray flame behaviour can be ruled out.

Two diagnostic techniques were used in the present study. Phase Doppler Anemom-
etry (PDA) provided single-point statistics on droplet velocity and size. We used a
two-colour PDA instrument (Dantec Measurement), capable of measuring velocities
and velocity correlations in two directions (r and z). By employing size discrimination,
the velocity and correlation statistics of the gas in the turbulent spray flame could
be derived. In principle, when enough statistics are collected, quantities related to
velocity can be determined with accuracy better than 5%. The number density, mass
fluxes and the drop size statistics of the liquid phase were also calculated at several
locations within the spray flame. In order to determine number density and mass
flux, one must first determine the laser probe volume of the PDA instrument. Since
this probe volume depends on droplet size, laser power, as well as a number of other
optical parameters, the best accuracy one can claim for these two derived quantities
is approximately 30%. To the extent possible, all diagnostic parameters were kept
constant between experiments, so as to ensure that the derived quantities were self-
consistent and any error would be systematic throughout the measurement field. Since
the PDA technique is susceptible to velocity bias, i.e. to over-counting the statistics of
the faster drops, a transit-time weighing scheme was implemented to counteract this
effect (McLaughlin & Tiederman 1973). As a result, all the velocities and correlations
that will be reported here can be regarded as volume-averaged quantities, in contrast
to the raw measurements which are flux-averaged quantities. It is the former that are
suitable for comparison with field theories.

In order to measure the gas temperature, spontaneous Raman spectroscopy was
implemented in the spray flame, details of which have been presented elsewhere
(Karpetis & Gomez 1996). The technique is an application of the classic Raman
spectroscopy in an environment that is particularly hostile to spectroscopic investi-
gations. In addition to the gas temperature, it is capable of measuring the nitrogen
molar fraction, despite the high droplet number densities prevailing in some areas of
the spray. This study is one of the first quantitative applications of this spectroscopic
method in such an environment. A schematic of the Raman thermometry system
is shown in figure 2. It consists of a pulsed Nd : YAG laser, frequency-doubled to
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Figure 2. Optical configuration for Raman spectroscopy.

532 nm. The Raman (vibrational–rotational) signal of nitrogen is monitored in two
spectral windows, one corresponding to the red-shifted, Stokes radiation (at 607 nm)
and one corresponding to the blue-shifted anti-Stokes radiation (at 473 nm). The only
difference between the system employed in this study and the one in Karpetis &
Gomez (1996) is the use of a third optical channel that performs measurements (at
630 nm) of the fluorescence from potentially interfering chemical species (e.g. poly-
cyclic aromatic hydrocarbons). This form of spectral baseline subtraction corrects the
Stokes signal measured by the Raman system. The choice of methanol as the fuel was
dictated by the need to avoid soot interferences in the flame (Eckbreth 1988). The
probe volume was an hyperboloid with a diameter of 500 µm and an effective length
of 500 µm, as created by slits in the imaging optical channels.

The smallness of the probe volume and the simplicity of the data reduction process
are the main advantages of the spontaneous Raman spectroscopy, when compared
to other spectroscopic techniques. The accuracy of the measurement is set by the
photon statistics of the Raman signals and is determined during the calibration of
the thermometry. In the present study the temperature accuracy was ± 100 K. The
average temperature was determined with varied accuracy, depending on the local
concentration of droplets and hence the position of the measurement. The difficulty
stemmed from the fact that the high laser flux necessary to produce detectable Raman
signals led to laser-induced breakdown whenever a droplet transited the measurement
probe volume (Chang et al. 1988). This phenomenon, in turn, resulted in high light
levels that consistently swamped the Raman signals. Whenever that occurred, an
additional optical system was used to invalidate the particular measurement (Karpetis
& Gomez 1996). As a result, this diagnostic technique measures the temperature of
the gas phase, conditioned on the absence of droplets in the probe volume. Typically,
an average of 600 measurements was performed at each spatial position within the
spray flame. Close to the centreline and at the burner exit, where high droplet number
densities prevailed, an average of only 100 temperature measurements was realizable.
It should be mentioned that, because of the high rejection rate in the dense areas
of the spray, and the low repetition rate of 10 Hz maintained by the pulsed laser,
roughly one hour of measurements was needed in order to produce these 100 valid
data. Although the Raman technique can provide the probability density function of
temperature in the spray flame, we shall use only the average values in this study.
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Figure 3. Radial scans of the average axial gas velocity in spray flames I (a) and II (b).

3. Experimental results
The results of the experimental techniques are shown in ‘primitive’ variable form

in figures 3 to 6. In each figure, (a) corresponds to the measurements in flame I and
(b) to those in flame II. Only those results that will be used subsequently are shown,
namely average gas axial velocity u, temperature T , velocity correlations u′v′, and
droplet number density n. The radial coordinate is non-dimensionalized with respect
to the burner diameter. The gas velocity statistics were calculated by considering all
drops smaller than 8 µm as tracers and taking their average velocity to be that of the
gas. Such an approach is justifiable, if one considers that the Stokes number of an
8 µm drop with respect to the estimated Kolmogorov time scale is 0.33, and that is
the highest possible value under hot conditions. According to this size discrimination
scheme, there is an incentive to increase this size cut-off as much as possible, in order
to increase the tracer population. For a fixed duration of measurement in any location
within the spray, this amounts to a larger statistical sample and hence smaller errors
in the measurement. In practice, changing the above cut-off to either 6 or 12µm
yielded minimal differences for the velocity and the velocity correlations attributed to
the gas phase.

Measurements were performed at z = 0.1D, z = 0.5D and at every half a burner
diameter (D) thereafter up to z = 6.5D. At each axial location, radial scans were
performed at 500 µm intervals for both experimental techniques, PDA and Raman,
but each technique was applied separately. The outermost radial position reached
with the PDA technique was limited by the availability of the small drops that
are used as gas tracers, while for the Raman measurements we tried to reach as
close a temperature to ambient as possible. It should be mentioned that the lowest
temperature that can be detected with accuracy by the Raman thermometry is 500–
600 K (Karpetis & Gomez 1996). All 14 radial scans from both flames are plotted
together in each of the figures 3 to 6, with arrows denoting the progression to larger
axial distance, and, wherever possible, with labels denoting the non-dimensional axial
location.

The axial velocity profiles show the characteristic bell-shape that is typical of jets,
with values that are decreasing in the upper part of the flame due to entrainment from
the ambient. Exceptions to this pattern are the radial scans close to the burner exit,
exhibiting a marked depression near the centreline. The high liquid mass close to the
injector causes a loss of momentum from the gas to the drops, with a wake-like effect
appearing at the burner exit. As will become clear when we discuss figure 10 below,
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Figure 5. Radial scans of the drop number density in spray flames I (a) and II (b).

the gas phase quickly recovers from this dip on the centreline by accelerating as a
result of the vaporization-induced momentum source. The effect is more pronounced
in flame I, as expected, in view of the larger overall equivalence ratio, corresponding
to higher mass loading and higher average drop number density. The correlation
u′v′ is presented in figure 4, non-dimensionalized by the local r.m.s values of both
velocities, u′ and v′. The collapse of the profiles is somewhat deceptive, because of
the scatter in the measurement of this second-order quantity. At the first few axial
positions and very close to the centreline (z 6 1.5D), the velocity fluctuations are
anti-correlated for positive r. One of these profiles (z = 1.0D) is drawn with symbols
and line, in order to visualize this behaviour. The profiles further downstream show a
linear behaviour with respect to r, as typical of axisymmetric jet flows (Pai 1954). The
increase in the level of correlation is almost always monotonic, most likely because
of the lack of data in the outer periphery of the flow field.

The droplet number density profiles are shown in figure 5. The data present a
variation of two orders of magnitude in this variable along the spray centreline of
each flame and anywhere between two to four orders of magnitude across the radial
scans. This fact, coupled with the large droplet densities achieved at the centreline
close to the exit, makes this type of spray flame well-suited for studies of group
combustion under turbulent conditions. The data are consistent with the picture of
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Figure 6. Radial scans of the average gas temperature in spray flames I (a) and II (b).

a spray flame spreading in the radial direction, with the fuel droplet number density
decreasing along the axial position because of the spreading of the jet, as well as the
concurrent droplet vaporization and eventual disappearance.

The measurements of the average gas temperature are shown in figure 6. Even
though temperatures below 500–600 K are not accurately measured, we plot all
data in figure 6, so as to bring forth at least the qualitative features of the whole
temperature profiles in the spray flame. All the profiles are bell-shaped, with the
maximum temperature at the exit (≈ 1650 K for flame I and ≈ 1200 K for flame II)
and decreasing slowly in the axial direction. Two points are immediately evident
from this plot. First, the combustion temperatures are relatively low, which can be
attributed to the low energetic content of methanol, or, insofar as the measured
temperatures are lower than the adiabatic flame temperature, to the dynamics of
the turbulent flow. Secondly, the maximum temperature at the exit is invariably
encountered along the centreline. Experiments in laminar sprays (e.g. Chen & Gomez
1996), as well as in turbulent gaseous flames (e.g. Becker & Yamazaki 1978) usually
show this trend only far from the burner exit, in the far field of the flame. The high
temperatures measured close to the injector exit, at the positions with the highest
liquid loading, are probably an artifact of the measurement technique. The diagnostic
requirement of the absence of drops in the probe volume results in measurement bias
in the high number density regions. In fact, it is conceivable that absence of drops
could correspond to the rare passage of a flamelet through the axis, which, of course,
would give an artificially high temperature measurement. It should be noted that
such a heavy conditioning takes place at very few measurement positions and, hence,
potential errors in these areas would have very small effects in what follows.

The velocity statistics of the dispersed phase comprise a large portion of the
experimental results. For the purposes of the subsequent analysis, that concentrates
on the mean field properties of the gas phase, the details of the size-classified
measurements are rather unimportant, and only the mean field properties of the spray
as a whole need be considered. Nevertheless, some consideration of the detailed droplet
statistics is worthwhile. Accordingly, in figure 7 we plot the size–velocity correlation
and probability density function of droplet size at three axial positions (z/D =
0.1, 3.5, 6.5) along the centreline of spray flame I. The size–velocity correlation is
shown in grey-scale images, with darker pixels denoting larger number counts. It is
evident from these plots that close to the burner exit the droplet velocity is smaller
than that of the gas, corresponding to the smaller size classes (d < 8µm). As distance
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Figure 7. Droplet size–velocity correlation (a) and droplet probability size distributions (b) along
the centreline of spray flame I, at z = 0.1D (i), z = 3.5D (ii) and z = 6.5D (iii).

along the axis increases, the velocity difference is decreasing, and at the last axial
position all drops move with similar velocities. The probability density functions show
the behaviour expected in burning sprays, namely a shift of the distribution towards
smaller values of droplet diameters due to combustion. At the same time, the spread
of the distribution increases and its skewness becomes less positive, as a result of the
faster vaporization rate of the smaller droplets. Significantly, both the correlations
and the size distributions are mono-modal, suggesting that inter-droplet collisions are
probably rare.

4. Theoretical premises
We now provide a theoretical framework and attempt to simplify this complex

two-phase flow problem. Whenever possible, we will rely on the experimental mea-
surements presented in the previous section, in order to limit the treatment to the
essentials. The discussion will be restricted to the mass and momentum conserva-
tion equations for an axisymmetric turbulent spray flame. The hybrid experimen-
tal/theoretical approach will enable us to show that the density information, as
inferred from the Raman thermometry, is adequate for a closed description of the
spray flame, through suitable transformations. Using the experimental data, we shall
also be able to evaluate a vaporization source term for the equations.

We shall start from the following form of the instantaneous mass and momentum
governing equations for the gas phase:

∂ρ

∂t
+ ∇ · ρu = nṁ, (4.1)

∂ρu

∂t
+ ∇ · ρuu− 1

r

∂

∂r

(
rρν

∂u

∂r

)
= −nȧ + nṁus, (4.2)

in which the boundary layer approximation has been invoked, limiting the diffusion
term to gradients in the radial (r) direction only. The flame is assumed isobaric, hence
the radial momentum equation becomes redundant in the boundary layer formulation
and will not be discussed. Equation (4.2) is written for the case of ‘two-way coupling’
of momentum, i.e. with the source terms that appear on the right-hand side because
of the presence of the dispersed phase. Buoyancy was neglected in all the derivations
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in the present work, since the Froude number (Fr = U2/gh) based on the observed
flame height h was larger than 50.

The source term nṁ appears in the continuity as an instantaneous field source of
vapour, as proposed in Labowsky & Rosner (1978) and Chiu, Kim & Croke (1982).
Writing the source as the combination of the droplet number density n with the
single-drop vaporization term ṁ, amounts to an assumption of negligible corrections
to the vaporization term because of drop proximity. It should be noted that even
in the regions of highest loading, the inter-droplet spacing is at least 250µm, which
is equal to the minimum inter-droplet distance that produces collective effects in
combusting drop arrays (Umemura 1994). Hence, the assumption of no proximity
effects in the collective vaporization source term is valid everywhere except in the
densest areas of our spray flames.

Two source terms appear in the gas momentum equation, coupling it with the spray
momentum equation (not written here). One is due to the inter-phase drag, written as
a combination of the drop number density n and the drag exerted by a single drop ȧ.
The second source term corresponds to the momentum added to the gas because of
the vaporization source nṁ. Both terms involve the spray velocity us, as will be shown
later.

The above equations can be written as

∂rρ

∂t
+
∂(rρu)

∂x
+
∂(rρv)

∂r
= rnṁ, (4.3)

rρ
∂u

∂t
+ rρu

∂u

∂x
+ rρv

∂u

∂r
− ∂

∂r

(
rρν

∂u

∂r

)
+ rnṁu = −rnȧ + rnṁus. (4.4)

The axial coordinate x, unlike the physical coordinate z (figures 3–6) that was
measured from the burner exit, is measured from a ‘virtual origin’ that will be
evaluated later.

There is not a large disparity between species molecular weights, insofar as the ma-
jor species (CH3OH, O2, N2, CO2 and H2O) are concerned. Therefore, one can invoke
a constant molecular weight approximation, which, in turn, allows the determination
of the gas density from the gas temperature through the ideal gas equation of state†.

By Reynolds averaging we obtain equations for the average field values:

∂(rρu)

∂x
+
∂(rρv)

∂r
= rnṁ, (4.5)

rρu
∂u

∂x
+ rρv

∂u

∂r
+
∂

∂r
(rρu′v′) + rnṁu = −rnȧ + rnṁus, (4.6)

where a quasi-steady-state approximation has been invoked and all correlations of
third order and some of second order were assumed negligible. Additionally, the
turbulent transport terms were assumed to be much larger than the laminar terms.
To solve the above system of equations for the mean field, one should resort to
Favre averaging, as proposed in Bilger (1975). This well-known approach ‘absorbs’

† A complete description of the problem would require consideration of the energy equation and
N−1 independent species conservation equations (where N is the number of chemical species). The
resulting system of equations would be much more complex, because of the presence of nonlinear
source terms associated with combustion, in all but the equation of the nitrogen mass fraction. The
experimental information on the gas phase temperature allows us to disregard the energy equation,
thereby simplifying the treatment drastically.
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the density into the dependent variables. The reason for avoiding such a procedure is
simply that the PDA is not a temperature/density sensitive instrument, therefore we
do not have any experimental information on Favre-averaged first- and second-order
velocities and correlations. Instead, we shall neglect all correlations between ρ,u, and
v as well as between n, ṁ,u and n, ȧ,us, which amounts to implicitly performing Favre
averaging. Neglecting the correlations ρ′u′ and ρ′v′ is a defensible necessity if one
wishes to avoid modelling such terms (Kolbe & Kollman 1980) thus complicating the
picture even further.

Equations (4.5) and (4.6) become

∂(rρ u)

∂x
+
∂(rρ v)

∂r
= rnṁ, (4.7)

rρ u
∂u

∂x
+ rρ v

∂u

∂r
+
∂

∂r
(rρu′v′) + rnṁu = −rnȧ + rnṁus. (4.8)

The ensuing density-time-averaged equations are identical to the laminar flow
equations under specific assumptions for the radial transport of momentum, namely
a gradient transport model ( Bilger 1989). This approach is a usual modelling step
that will be avoided, at least for the moment, for the following reason: it would
amount to an over-specification of the problem, since it forces the classic similarity
solution of a turbulent axisymmetric jet (George 1989), the applicability of which is
yet to be demonstrated for the case of a turbulent spray flame.

An alternative approach will be pursued here. Since the Raman thermometry
provides the temperature and density, one can perform the Howarth transformation
(Howarth 1948) on the equations above. This transform to a mass-weighted radial
coordinate makes use of the experimentally determined gas densities and ‘absorbs’ the
density into the independent variables. In so doing, we decouple the energy equation
from the rest of the conservation laws and thus avoid solving it altogether.

The transformation maps the incompressible boundary layer into a constant-density
boundary layer. It should be noted that the presence of the vapour source makes
the boundary layer compressible, even though the density may be constant (Rosner
1986). The subscript (+) will refer to this transformed system at constant density ρ+.
The rules of the transformation are

x+ ≡ x u+ ≡ u, (4.9)

r2
+ ≡ 2

∫ r

0

(ρ/ρ+)r dr, v+ ≡ r

r+

ρ

ρ+

v̄ +
u

r+ρ+

∫ r

0

∂ρ

∂x
r dr. (4.10)

The transformation (4.10) ensures conservation of mass between the two systems
(Williams 1985). It should be already evident that the ρ+ of the constant-density
system is a free parameter, for which the standard reference state (1 atm, 298 K)
may be chosen, that is ρ+ = ρo. The Howarth transformation simplifies continuity
in the new compressed system. The momentum equation, however, is not similarly
simplified, unless an extra conservation law is postulated between the two systems.
This was introduced first by Mager (1958) in planar turbulent boundary layers and
conserves the turbulent inertia forces (terms proportional to u′v′) between the two
systems. A similar law (and the one that will be used here) was later used by Libby
(1962) and Ting & Libby (1960) in the treatment of axisymmetric turbulent flames.
It involves the moment of the turbulent forces between the two systems, namely

rρu′v′ρr dr dx ≡ r+ρ+u
′
+v
′
+ρ+r+dr+dx+. (4.11)
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The Howarth–Mager transform converts the mass and momentum equations (4.7)
and (4.8) into the new compressed system

∂u+

∂x+

+
1

r+

∂(r+v+)

∂r+
=

nṁD

ρU
≡ ṡ+, (4.12)

r+u+

∂u+

∂x+

+ r+v+

∂u+

∂r+
+

∂

∂r+
(r+u

′
+v
′
+) + r+ṡ+u+ = −r+nȧD

ρU2
+
r+nṁusD

ρU2

≡ −r+ḟ+ + r+ṡ+us+. (4.13)

The equations are considered non-dimensional, with lengths divided by the burner
diameter D and velocities divided by an average cold-flow value based on the flow
rate, that is U=10 m s−1 and U=14.4 m s−1 for flames I and II, respectively. Note that
both mass and momentum equations (4.12) and (4.13) were written in such a way that
the left-hand side of the equation corresponds to the conservative part, with sources
appearing on the right-hand side.

The vapour source term ṡ+ will be discussed next. The drop number density n
comes directly from experiment, while the vaporization rate of an individual droplet
(ṁ) is given by Williams (1985) as

ṁ = 2πλ/cpd10ln (1 + B) = 2π(ρDl)d10ln (1 + B), (4.14)

where d10 is the arithmetic mean of the drop diameters, and the Lewis number has
been taken as unity for simplicity. The Spalding number B can be assumed to be
constant, under the assumption that the fuel vapour concentration around the droplet
is far from saturation and the temperature variations across the spray are not too
large. Because of the logarithmic dependence of the term, the variations in the source
term nṁ come mostly from the very large variations of n. Thus, constancy of B as well
as the neglect of the correlations between n and ṁ during Reynolds averaging seem
justifiable. Implicit in the adoption of (4.14) is the assumption that no cooperative
effect is taking place during vaporization, i.e. the drops are not sufficiently close to
each other to influence their individual vaporization rates. Since the individual drops
are smaller than the Kolmogorov length scale, the relevant diffusivity for vaporization
is the laminar one. Hence the drops are assumed to be vaporizing in a local laminar
environment within even the smallest eddy of the turbulent gas. For the temperature
dependence of the laminar mass diffusivity a Sutherland model was assumed which
results in the following dependence of the diffusivity on the density:

Dl = Dl
+ (ρ+/ρ)1.7 = νl+ (ρ+/ρ)1.7, (4.15)

where the Schmidt number has also been assumed unity.
Finally, the source term appearing in the transformed equation is

ṡ+ = nṁD/(ρU) = n 2πDld10ln (1 + B)D/U, (4.16)

where the term D/U comes from non-dimensionalizing the equations.
By analogy with vaporization rate, the average drag on a single drop in the spray

can be written as

ȧ = 3π ρνld10(u− us), (4.17)

where the correlation between droplet size and velocity has been neglected. The
combined inter-phase drag due to the presence of a collection of drops would be
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accordingly

ḟ = nȧ = n 3π ρνld10(u− us), (4.18)

where us is the average spray velocity, in the sense of volume-averaged field variable.
As shown in Sadhal & Oguz (1985), the Stefan flow around the drop causes small
deviations from the Stokes drag, which can be neglected. The form of the non-
dimensional inter-phase drag appearing in the transformed equations then becomes

ḟ+ = ḟD/(ρU2) = n 3π νld10(u− us)D/U2. (4.19)

5. Similarity and implications
On the basis of the experimental information on gas density, we evaluate the trans-

formed independent variables x+ and r+ corresponding to the physical coordinates x
and r, using (4.10). Subsequently, self-similar behaviour is established for the vapour
source ṡ+ and the axial velocity u+ in the spray flames. The velocity scaling is then
contrasted to the classic solutions predicted for the incompressible gas jets, namely
the inverse linear decay of axial velocity with axial distance (Schlichting 1987; Rosner
1986).

5.1. Scaling of the vapour source

In figure 8 we plot the values of the vapour source (̇s+(0)) along the centreline of
the two spray flames. This variable can be described by a power law of x+ along the
centreline, with different exponents for the two flames. Specifically, we find ṡ+(0) ∼ x−α+

with α = 3 and 3.5 for flame I and II respectively. The axial distance x+ is measured
from the injector tip (x+ = z/D + 2), since this is the position where the liquid drops
are formed.

If we seek a similarity variable that produces collapse in the radial direction, we
succeed by rescaling the radial coordinate as η ≡ r+/x

γ
+ with γ = 1.5 and 1.75 for

flame I and flame II respectively. This is shown in figure 9(a, b), where we plot the
rescaled vapour source (f1(η) = xα+ṡ+) against the similarity variable (η) for radial
scans at z > 1D. There is evident collapse, which could be extended to all profiles,
i.e. including the ones for z 6 1D, by small adjustments of the position of the virtual
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origin and the exponents γ and α. Such a procedure is rather tentative and will not
be pursued here. The uncertainty in the temperature measurement in the most dense
regions of the flame would affect the calculation of ṡ+ in these areas, through changes
in the laminar diffusivity (4.15). However, a possible error in temperature does not
affect the determination of the power-law exponent significantly.

The implication of such a result is two-fold: first, we may describe the spray flame as
a point source of vapour source. In what follows the less repetitive term ‘point source
of vaporization’ will be used instead. Second, the exponent (γ) of axial distance in the
similarity variable that effects the best collapse in figure 9(a, b) is half the exponent
(α) of axial distance describing the centreline decay. This result, stemming from the
experimental observation, can be rationalized as follows. The liquid mass conservation
equation can be written in integral form as

(∂/∂x)

∫ ∞
0

rρsus dr = −
∫ ∞

0

rnṁ dr ∼ −
∫ ∞

0

r+ṡ+ dr+ = −x2γ−α
+

∫ ∞
0

ηf1(η) dη, (5.1)

where ρs and us are the density and axial velocity of the spray (Williams 1985), and
the integral on the left-hand side of (5.1) is the total liquid flow rate as a function
of x+. On the basis of the high number density and temperature close to the exit, we
expect the vaporization to be higher for smaller x+, hence 2γ−α 6 0. The requirement
of finite liquid flow rate at x+ = 0 excludes all cases of 2γ − α < 0 and enforces the
condition 2γ = α, in agreement with the scaling of figure 9. This development implies
that the combination of a point source of vaporization with finite liquid flow rate at
the exit forces a linear decrease of liquid flow rate with axial distance.

5.2. Scaling of the axial velocity

In figures 10(a) and 10(b) we plot the centreline axial velocity u+(0), normalized by the
cold flow velocity U, as measured by the PDA (dropping the overbars for notational
simplicity) versus the independent variable x+ for flames I and II respectively. In the
same figures the values of the average spray velocity along the centreline are presented
(similarly normalized). For the first half of the field of measurements, the gas velocity
shows an increase with axial distance. In view of the rather small differences in gas
density, as evidenced by the small decrease in temperature along the centreline, this
behaviour must be explained by the competition of the source terms appearing in the
momentum equation. In fact, the spray velocity along the centreline is smaller than
the gas velocity and the inter-phase drag leads to deceleration of the gas. Hence, the



246 A. N. Karpetis and A. Gomez

2
x+

u +
 (

0)
 , 

 u
s(

0)

3 4 5 6 7 8�

(a) (b)

2

1
9� 10� 2

x+

3 4 5 6 7 8� 9� 10�

u+ (0) = 4.7 x+
–0.50 R = 0.99 u+ (0) = 7.4 x+

–0.83 R = 0.99

Figure 10. Centreline behaviour of gas and spray axial velocities (open and filled symbols respect-
ively) in spray flames I (a) and II (b). R is the coefficient of determination of the power-law fit.

observed gas acceleration has to be an effect of the momentum addition through the
spray vaporization. This is a clear example of the two-way coupling of momentum
in the spray flames. Close to the burner exit, where the liquid loading is highest,
and the velocity profiles exhibit the largest depression near the centreline (see also
figure 3), acceleration prevails. The actual values of the exit velocity are lower for
flame I as compared to flame II, and the subsequent acceleration is higher in flame I,
both effects being attributable to the higher loading in this flame.

In the second half of the measurements, the axial velocity shows the expected
decrease with axial distance, since the vaporization and heat release are less pro-
nounced there and the jet spreading predominates. Thus, while in the lower portion
of the flame two-way coupling of momentum is established, in the upper portion of
the flame, one-way coupling of momentum (from the gas to the drops) is expected
because of the decreasing number density of the liquid drops.

It is instructive to examine the integral form of the gas momentum equation, in
order to further investigate the relative importance of the source terms. Integration
along the radial direction (r) gives

∂

∂x

∫ ∞
0

2πrρu2 dr = −
∫ ∞

0

2πrnȧ dr +

∫ ∞
0

2πrnṁus dr. (5.2)

This equation, with the right-hand side identically set to zero reduces to the well-
known momentum conservation of single-phase non-buoyant jets. Equation (5.2) can
be converted through the Howarth transform into the compressed system

∂

∂x+

∫ ∞
0

r+u
2
+ dr+ = −

∫ ∞
0

r+ḟ+ dr+ +

∫ ∞
0

r+ṡ+us+ dr+, (5.3)

where all quantities are non-dimensional. The source integrals can be evaluated from
the experimental data, and they are presented in figure 11(a, b). It is evident from
these plots that the momentum added to the gas by vaporization is always larger
than the momentum lost to the drops through the inter-phase drag. Furthermore,
the imbalance of the sources does not only hold along the centreline as shown
previously, but extends to the full integral along the radial direction. Hence the total
gas momentum is increasing along the spray flames. It is interesting to note that both
source terms become smaller as axial distance increases. The term due to vaporization
is decreasing through the expected decrease of the spray velocity along the centreline,
while the inter-phase drag becomes smaller as an effect of the expected momentum
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equilibration between the two phases (and, as is the case for the furthest positions of
the measurements in figure 11, can change sign).

We expect that the combined effect of the increase of the left-hand-side of (5.3)
and the decrease of the right-hand side would lead into a situation where the source
terms are negligible compared to the momentum integral, hence an approximate
conservation law would hold:

M =

∫ ∞
0

rρu2 dr = ρ+

∫ ∞
0

r+u
2
+ dr+ ≈ const, (5.4)

setting-up the case of ‘one-way coupling’ of momentum between the two phases.
The lowest boundary of the region where one-way coupling of momentum holds
in the spray flame, at least at the level of the mean axial velocity, will be assumed
provisionally to coincide with the location where the centreline axial velocity starts
decreasing with axial distance. We will seek a power-law behaviour of the axial
velocity with respect to axial distance in this region. This nonlinear scaling is different
from the linear behaviour of the (inverse) velocity with respect to axial distance
(u+(0) ∼ x−1

+ ) that is found in incompressible jets (Schlichting 1987) and jet flames
(Dahm & Dibble 1992; Driscoll et al. 1996) and its justification will be presented
subsequently.

If one sets the virtual origin of momentum at the injector tip, and hence assumes
that x+ = z/D+2, the axial velocity shows a decrease proportional to (approximately)
some fractional power of the axial distance. The best fit, as shown in figure 10 gives
u+(0) ∼ x−0.5

+ for flame I and u+(0) ∼ x−0.83
+ for flame II, respectively. The positioning

of the virtual origin at z = −2D is somewhat arbitrary, yet a more accurate prediction
is hindered by the fact that both the exponent of the velocity decay and the position
of the virtual origin are unknown.

The behaviour in figure 10(a, b) suggests that similarity should be sought for the
dependent variable f2(r+, x+) = u+x

β
+, where β is the power-law exponent of the

axial velocity decay. If one seeks similarity with respect to the simplest independent
variable following a power law of the form ξ = r+/x

β
+, then the following must hold:

M/ρ+ =

∫ ∞
0

r+

x
2β
+

f2
2(r+, x+) dr+ =

∫ ∞
0

r+

x
β
+

f2
2

(
r+

x
β
+

, x+

)
d
r+

x
β
+

=

∫ ∞
0

ξf2
2(ξ, x+) dξ = const., (5.5)
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Figure 12. Axial gas velocity similarity function in spray flames I (a) and II (b).

where the approximate equation was converted to an exact relation. Then, constancy
of the momentum flux in the spray (since there is no sink of momentum if two-way
coupling is neglected) requires that the dependent variable f2 be a function of ξ only,
and hence

u+x
β
+ = f2(r+/x

β
+), (5.6)

i.e. the similarity variable ξ = r+/x
β
+ is required by momentum conservation. This is

corroborated by the experimental data, as shown in figure 12. There, we plot the radial
scans of the rescaled axial velocity component u+x

β
+ versus the independent variable

ξ ≡ r+/xβ+, with numerical labels indicating the axial location of the scan (z/D). The
first six profiles closest to the exit do not collapse, as expected, since the presence
of high mass loading invalidates the form of the momentum conservation in (5.4).
Further from the source, the good collapse of the data indicates that the above can
indeed be a proper scaling of the axial momentum.

The presence of the drops has effects on the gas field at all possible orders
(Faeth 1987). As shown in Parthasanarthy & Faeth (1990), the two-way coupling
of momentum leads to gas turbulence modulation in homogeneous turbulence, even
in stationary flows. Elghobashi & Truesdell (1993) showed that the dispersed phase
has an effect even at the smallest scales of turbulence, yet on the level of mean
quantities, the one-way coupling of momentum can be defined as the region where
the momentum integral of (5.5) is constant, i.e. where there is on the average no net
loss of gas momentum to the drops. Then, the assumption that one-way coupling
prevails from the location where the axial velocity begins to decrease along the
centreline (see figure 10) is well justified. Since the mass loading changes drastically
within the spray flames, and in view of the expected effects of the drops on the gas
phase, we may define the terms ‘dense’ or ‘dilute’ spray on the distinction between
two-way coupling and one-way coupling of momentum on the level of mean velocity.

A crucial point for all the developments presented in this paper is the functional
form of the self-similarity assumed to hold within the flow field. Equation (5.6), as
well as the manner in which the axial velocity was plotted against axial distance
in figure 10, both anticipate the possibility that the velocity behave as a power law
of the axial distance. The exponent of that power law (β) turns out to be different
from unity and dependent on the particular flame conditions, notably the overall
stoichiometric coefficient Φ (see below).

The markedly different behaviour of the velocity decay along the spray centreline
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Flame Q̇g (l min−1) ṁl (g min−1) Φ β

I′ 66 5.1 0.42 0.26
I 80 5.1 0.35 0.50
II′ 80 3.4 0.23 0.71
II 110 3.0 0.15 0.83

Table 1. Parameters of interest for the four spray flames studied along the centreline.

between the two flames prompted us to examine this behaviour in greater detail.
Accordingly, the measurements of flames I and II were augmented by additional
centreline velocity measurements that extended well beyond the visible tip of the
spray flame. In addition, two more flames were studied in this fashion, for other
combinations of air flow rate, Q̇g , and liquid mass flow rate, ṁl , and consequently Φ
(table 1). All centreline measurements are presented in figure 13(a–d). We plot the
inverse axial velocity, non-dimensionalized with respect to the mean gas velocity at
the burner exit in each case (U). The dashed vertical bar shows the approximate
average position of the visible tip of the spray flames, obtained from long-exposure
digital photography.

Evident in these results is the existence of three different regions in the spray flames,
as the dependence of axial velocity on axial coordinate changes. The initial region
(A, drawn with diamonds) is where two-way coupling of momentum prevails, and
where the velocity is increasing. In region (C), drawn with open circles, the flow field
recovers the behaviour expected from single-phase jets and flames, namely a linear
behaviour of inverse velocity with axial distance. The solid lines drawn through this
region show the best linear fits and the existence of a virtual origin of momentum for
this final region. An intermediate region (B) drawn with full circles is clearly visible, at
least for the flames with higher liquid mass loadings. Although the beginning of this
region can be fixed by momentum conservation, as done previously, its end cannot
be as easily defined. One way would be to define it as the axial position where the
velocity measurements depart appreciably from the linear scaling that holds in region
(C).

A universal behaviour is perhaps expected for the final part of the flow field. This
is not the case for the intermediate part (region B). As shown in figure 13, both types
of scaling of axial velocity are in fact admissible, the dotted lines representing the best
linear fit of inverse velocity in the intermediate region, the solid lines representing
the nonlinear scaling. The former could describe the intermediate region as having
different spreading rates and virtual origins for every flame, while the latter as it
having different power-law exponents and the same virtual origin (x+ = 0). As shown
in George (1989), to admit either of the two scalings, the flow field must maintain
a ‘memory’ of its initial conditions. In the case of spray flames the presence of the
drops and the distributed source of vapour in the two-way coupling regions fulfils
this condition.

It should be evident from the above that the experimental information alone is
not sufficient for a decision between the two types of self-similar behaviour, mainly
because of the limited extent of region B. Nevertheless, the nonlinear self-similarity
presented here has clear advantages, at least in the case of spray flames. The linear
scaling requires the introduction of a negative virtual origin, which would appear
to be unphysical, if it is supposed to denote a length scale of the developing flow.



250 A. N. Karpetis and A. Gomez

(a)

1.2

0

0.2

0.4

0.6

0.8

1.0

A B

C

–20 –15 –10 –5 0 5 10 15 20

1/
u +

u+ = 3.2 x+
–0.26

u+ = 51.7/ (x+ +19.5)

u+ = 5.3/(x+ –2.4)

(b)

1.5

0

0.5

1.0

A
B

C

–10 –5 0 5 10 15 20

u+ = 4.7 x+
–0.50

u+ = 27.7/ (x+ +7.5)

u+ = 9.9/(x+ –3.4)

(c)
0

0.5

1.0

1.5

A
B

C

–5 0 5 10 15 20

1/
u +

u+ = 6.7 x+
–0.71

u+ = 16.9/(x+ +2.9)

u+ = 10.4/(x+ –1.5)

(d )

2.5

0

0.5

1.0

1.5

2.0

A
B

C

0 5 10 15 20

u+ = 7.3 x+
–0.83

u+ = 12.1/ (x+ +1.2)

u+ = 7.9/(x+ –1.7)

x+

A

x+
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The argument is strengthened when one realizes that in the case of the flame with
the highest Φ, presented in figure 13(a), the virtual origin required for universal
self-similarity would be x+ ≈ −19.5, i.e. larger than the actual flame itself, as well
as negative. On the other hand, the virtual origin for the nonlinear scaling that was
presented here could be set on the injector exit for all flames, corresponding exactly
at the initial point of the flow field.

The flame tip varies in position from the third region (figure 13a) to the beginning of
the intermediate region (figure 13d). At the same time, the temperature measurements
of flame II show the intermediate region forming in relatively cold, non-combusting
areas of the flow field. These findings suggest that the appearance of the intermediate
scaling of the axial velocity is not related to the heat addition due to combustion,
but rather is a peculiar feature of spray flames, due to the presence of the two-way
coupling (region A) and the vapour source.

Going back to the intermediate region for which self-similarity was established,
and combining the experimental data from figures 8–12, we conclude that there exists
scaling of the form

ṡ+x
α
+ = f1

(
r+

x
γ
+

)
= f1(η), u+x

β
+ = f2

(
r+

x
β
+

)
= f2(ξ). (5.7)

The trend of increasing exponent β with increasing gas flow rate and decreasing
liquid loading has been shown for four different flames in figure 13. Since the ratio
of the two is proportional to the overall stoichiometric parameter Φ, we may cast the
above trend in terms of Φ, namely a decrease in Φ results in an increase in β, as is
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evident from table 1. As the liquid loading decreases between flames I′ and II, the
effect of the two-way coupling becomes less pronounced, since the relative importance
of the momentum source term is reduced, on account of the expected decrease in
number density n and the decrease in the overall temperature in the spray flame (as
already evidenced in the comparison between flames I and II). In accordance with
the picture offered thus far, the intermediate region of the velocity scaling becomes
less pronounced as Φ decreases. The exponent β increases towards unity, and in fact
the two descriptions of velocity decay in region B are very similar. Furthermore,
neither is all that different from the final inverse linear decay of region C, making
the demarkation of the three regions less clear. Considering that as the liquid loading
becomes smaller the flame length diminishes, one should expect to recover precisely
such a behaviour of gas jets.

The scaling (5.7) is valid away from the singular point of the point source of
momentum and vaporization (x+ = 0) and hence the derived similarities are both
asymptotic in the sense of Barenblatt (1996). A more elaborate approach would take
the size as well as the strength of the sources into account, and consider the inter-
phase terms in the momentum equation (two-way coupling). This would produce a
description valid throughout the field of measurements. Such an approach would be
more complex and will not be pursued here.

It should be noted that the self-similarity shown above is global, since the velocity
in (5.7) is normalized with the exit velocity U and the local r+ and x+ by the exit
diameter D. Then, a weaker form of local similarity necessarily holds in this case. If
we define the radial position b+ as the position where the local axial velocity is half
the local velocity at the centreline (u+(0)) and normalize the local axial velocity by
the centreline value, then the following is the form of the local self-similarity:

u+b+ = f2

(
r+

b+

)
. (5.8)

The above is a necessary (but not sufficient condition) for (5.7) to hold. They become
equivalent when one realizes that the growth rate b+ is proportional to x

β
+. Even

though the data from both flames show this trend in growth rate versus axial distance,
these results will not be presented here, since, in effect, they can be trivially derived
from the scaling presented above and the good collapse shown in figure 12(a, b)
guarantees that a relationship of the form b+ = cx

β
+ holds. Dahm & Dibble (1992)

have postulated a similar form of local self-similarity to hold in gaseous jet diffusion
flames. Following an argument substantially different from the one presented here,
they also allow for the possibility of a global self-similar behaviour with an exponent
β less than unity (see also Driscoll et al. 1996).

6. Reynolds stresses in turbulent spray flames
Next, the scaling of (5.7) will be used in the mass and momentum equations.

Starting with (4.13), we can solve for the second-order correlation u′+v′+, if we first
solve the mass conservation equation (4.12) for the radial velocity v+. Combining
(4.12) and (5.7) we get

r+v+ =
β

x
1−β
+

(
ξ2f2 −

∫ ξ

0

ξf2 dξ

)
+

1

x
α−2γ
+

∫ η

0

ηf1 dη. (6.1)



252 A. N. Karpetis and A. Gomez

By combining equations (4.13),(5.7) and (6.1) we arrive at

r+u
′
+v
′
+ =

f2

x
β
+

(
β

x
1−β
+

∫ ξ

0

ξf2 dξ − 1

x
α−2γ
+

∫ η

0

ηf1 dη

)
. (6.2)

Both (6.1) and (6.2) offer predictions for the radial velocity and the Reynolds stress.
Unfortunately, the experimental information on v cannot be converted into v+ through
the Howarth–Mager transform, since the resolution of the Raman thermometry does
not warrant any calculation of density gradients. We will instead concentrate on the
prediction for the Reynolds stress in (6.2).

It is easy to verify that the two integrals contained on the right-hand side of (6.2)
are both related to mass flux in the spray flame:∫ ξ

0

ξf2(ξ) dξ =
1

x
β
+

∫ r+

0

r+u+ dr+ =
1

ρ+xβ

∫ r

0

rρu dr (6.3)

∫ η

0

ηf1(η) dη =
1

x
2γ−α
+

∫ r+

0

r+ṡ+ dr+ =
1

ρ+x
2γ−α
+

∫ r

0

rnṁ dr. (6.4)

The first integral (6.3) is related to the fractional mass entrainment from the ambient,
while the second integral (6.4) is the fractional vapour production in the spray. The
first term tends to increase the value of the correlations u′+v′+, and is related to the
turbulent transport of momentum through the spray flame. The second term tends
to reduce the value of the correlation, working against turbulent transport. Since this
term arises because of the presence of the vapour source, it can be construed as a
relaminarization tendency due to vaporization.

The practical importance of the self-similarity of the axial velocity can be seen in
the first integral (6.3). The fact that the velocity scales with an exponent β smaller than
unity leads to smaller entrainment of the ambient air than for a flow corresponding
to β = 1. The intermediate region of the flow identified above can be a significant
portion of the flame before extinction. The fact that this exponent can become much
smaller than unity, as in the flame of figure 13(a), means that in practical cases of
spray flames the air entrainment can be much smaller than expected from the naive
application of single-phase jet laws.

We may now proceed to the actual comparison between the experimental data and
the prediction of the values of correlation u′+v′+ in (6.2). For conciseness we present
the experimental data only from flame I. Figure 14 shows the correlation (solid
line), calculated from the right-hand side of equation (6.2) and the experimental data
(circles), both plotted versus radial distance r+. The agreement is good downstream of
the exit (for z > 3) where the similarity scaling of the velocity holds, and becomes even
better further downstream, where one of the two terms, specifically the reduction due
to the vaporization, becomes negligible. Note that no simple scaling may exist for the
correlations since the two integrals that comprise it are functions of different similarity
variables, namely ξ and η. Similar results have been obtained from flame II. The
agreement in that case is made worse at the last couple of radial scans (for z > 5.5D).
This can be attributed to the experimental over-prediction of the temperature at the
sides of the spray flame, leading to errors in the calculation of r+ and hence to the
integrals in (6.2). This is also the likely reason for the small departures at the sides
of the spray flame I shown in figure 14, even when the profiles show very good
agreement everywhere else.
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Figure 14. Reynolds stess term at various axial locations in flame I. Solid line calculated from
equation (6.2). Symbols correspond to experimental measurements.

7. Closure and modelling
Closure of the turbulent boundary layer equations can be brought about with a

simple scalar model of the turbulent transport, such as a gradient transport model.
As a result, first, a simple constant, inaccurate though it may be, quantifies the
extent of the turbulent transport. Second, first-order quantities can be solved for. This
strategy appears to be justified in the present case as a first approach to the relatively
unexplored area of turbulent spray combustion. More sophisticated models will be
pursued in the future.

From the form of the term u′+v′+ in (6.2), it is obvious that a gradient transport
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model with a constant turbulent diffusivity is not applicable in this case†, since the
term u′+v′+ is manifestly proportional to the axial velocity u+. If we split the term into
the two contributions mentioned above, namely one due to the transport and one
due to the vaporization, we may try a simple model for the part related to turbulent
transport. Accordingly, we define

u′+v′+|t ≡ βu+

r+x
1−β
+

∫ ξ

0

ξf2 dξ. (7.1)

We will use the classic approach of a mixing length. As can be seen in Pai (1954),
the mixing length is a scalar that allows for local similarity of the Reynolds stresses,
under the condition of constant transport coefficient throughout the flow field. We
will attempt to satisfy the local self-similarity by normalizing the stess terms by u2

+(0),
velocities by u+(0) and lengths by b+, i.e. the local parameters of the flow. Then, an
effective turbulent diffusivity νt should relate these terms via

u′+v′+|t
u2

+(0)
= −νt ∂(u+/u+(0))

∂(r+/b+)
. (7.2)

Assuming b+ = cx
β
+ and substituting (7.2) into (7.1) we get

−c νt x1−β
+ /β = (f2/ξf

′
2)

∫ ξ

0

ξ(f2/f2(0)) dξ, (7.3)

where the prime denotes differentiation with respect to ξ. Since the right-hand side of
the equation is a function of ξ, the effective turbulent diffusivity cannot be constant
throughout the flow field, except (and only) when β = 1. This is a result that was first
proven by George (1989) but has had, so far, no practical repercussions. The simple
scaling of (7.2) forces the scaling of the effective diffusivity

−cνt x1−β
+ /β = (f̌2/ξf̌

′
2)

∫ ξ

0

ξf̌2 dξ ≡ −λ(ξ). (7.4)

Of course, there is a way of ‘rescuing’ the local self-similarity of the Reynolds stresses
by requiring λ(ξ) to be a constant. Then, the effective diffusivity νt is not constant,
rather it varies as xβ−1

+ . The experimental data can provide a check on that assumption
as shown in figure 15, where we plot λ(ξ) as calculated from (7.4), using the data
from flame I. The data shows the collapse of λ(ξ) to a constant for the profiles of
the intermediate region, where self-similarity of the velocity holds. Exceptions close
to the centreline (ξ = 0) are probably due to numerical errors, namely divisions by
small numbers. It is worth noting that the data from flame II (not presented here)
show a similar behaviour. A different value of the constant λ characterizes flame II,
signifying that λ(ξ) can be constant within a spray flame but need not be constant
between different spray flames.

The mixing-length arguments above constitute closure of the problem at the first
moment. We can solve for the axial velocity similarity profile f2(ξ). Equation (7.3)

† Despite that fact, we used such an assumption as a crude means of validating the hypothesis
of negligible laminar transport in (4.6). We calculated an effective turbulent diffusivity from the

measurements of u′+v′+ and the profiles of u+ and contrasted it to the laminar diffusivity at the
highest temperature. The turbulent quantity was always at least an order of magnitude larger than
the laminar one, thus substantiating the assumption of the prevalence of turbulent transport.
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leads to

λ = −(f̌2/ξf̌
′
2)

∫ ξ

0

ξf̌2 dξ, (7.5)

where f̌2 denotes the normalization f2(ξ)/f2(0). Under the substitution f̌2 = ey this
leads to the equation

ξy′ + ξ2y′′ + ξ2ey/λ = 0. (7.6)

The above has been solved analytically (and verified numerically) as

f̌2 = (1 + ξ2/8λ)−2. (7.7)

The result in (7.7) can be checked against the experiments, thus validating the

whole procedure. Since the profiles of f2 (and hence f̌2) show a reasonable collapse
in the intermediate region of the flame (figure 12), for clarity of presentation it will
suffice to compare a typical experimental profile (from z = 5.0) to the solution of
equation (7.7), as shown in figure 16. The similarity functions from both flames are
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plotted in this figure, as an indication that the calculated profile of f̌2 appears to
be ‘universal’, when the proper value of λ is taken into account. The agreement is
very good, yet the significance of such a result is somewhat limited by the elementary
means of effecting closure, i.e. the mixing length approach. Nevertheless, this model
should be useful as a first approach to the problem at hand.

8. Conclusions
An experimental study was performed on two turbulent spray flames in which the

droplets were introduced in the gas at small velocity relative to the gas phase to mini-
mize the liquid injector effect on the spray behaviour. Applications of Phase-Doppler
interferometric techniques and of Stokes/anti-Stokes Raman thermometry enabled us
to measure the size, velocity and concentration of the droplets, as well as the gaseous
velocity and temperature. A hybrid experimental/theoretical approach, relying on
the experimental measurements and on appropriately transformed continuity and
momentum equations, led to the following principal conclusions:

(1) The spray flame can be divided into three different regions, based on the
behaviour of axial velocity along the centreline. In the first region, close to the
burner, two-way coupling of momentum dominates. In the intermediate region, the
axial velocity along the centreline follows a fractional power law of the distance from
a virtual origin. This finding can be contrasted with the behaviour of incompressible
turbulent jets that are characterized by an inverse first-power dependence on the same
parameter. Such a dependence is recovered in the third and last portion of the spray
flames. The implication is that the entrainment rate of these spray flames is drastically
different from that of their incompressible counterparts;

(2) The source term in the continuity equation, that is modelled neglecting droplet
interactive effects, decays along the centreline as an inverse power of the distance
from the virtual origin;

(3) Self-similar behaviour for both variables, axial velocity and vapour source terms,
was found throughout the spray flame, in both flames that were studied in detail.
In the case of the axial velocity, self-similarity does not apply near the burner exit,
partly because of two-way coupling between droplets and the gaseous stream;

(4) By using the derived scaling laws, an expression for the Reynolds stress term in
the momentum equation was inferred, accounting for two competing contributions.
One term tends to increase the value of the velocity correlation, is related to the cu-
mulative mass entrainment and can be interpreted as the contribution of the turbulent
momentum transport. The second term reduces the value of the velocity correlation,
working against turbulent transport. Such a term arises because of the presence of the
vapour source and can be construed as a tendency towards relaminarization induced
by vaporization;

(5) Modelling of the turbulent momentum transport term of the Reynolds stress, to
bring about closure in terms of a mixing-length-like scalar, the average axial velocity
and its gradient, yielded good agreement with the experimental measurements.
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